TRANSMISSION OF RADIATION ENERGY THROUGH
ABSORBING AND DISPERSING MATERIALS IRRADIATED
BY A PARALLEL BEAM AT SOME DEFINITE ANGLE

OF INCIDENCE

S, G. Il'yasov and V. V, Krasnikov UDC 536.3

Laws governing the transmission of radiation energy are established on the basis of which

it is possible to calculate the distribution of flux density and absorbed energy over the thick-
ness of an absorbing and dispersing layer irradiated from both sides at some definite angle
of incidence.

In [9] we have established laws which govern the attenuation of a diffuse radiation flux in materials,
At the same time, infrared heat treatment and drying of food products and other materials is effected by
various modes of irradiation, namely by two-sided or one-sided irradiation with a diffuse flux or with a
wide parallel beam. Typical examples of parallel irradiation are infrared lamps with a parabolic mirror
in an open chamber, or solar infrared radiation for drying vegetables, fruit, cotton, peat, ete, Various
structural components made of radiation dispersing material are also exposed to solar infrared beams
impinging at a continuously varying angle, Therefore, it is important to know the laws which govern the
attenuation of a radiation beam impinging on a material at an angle,

It does not appear feasible to apply here known solutions to the equation of energy transmission for
a narrow radiation beam through turbid media [1, 2, 6-8, 10-14], because they represent a special case
with, above all, no data available on the dispersion indicatrix x)\('y) and on the angular pattern of the radia-
tion flux within a layer,

The difficulties in obtaining these data arise, because dispersion of radiation by inhomogeneities
in materials under study is a more complex phenomenon than ordinary dispersion of radiation by particles.
In this case the dispersion centers may be not only colloidal particles-and density fluctuations, but also
pores and capillaries randomly distributed in a body.

The propagation of a narrow beam of radiation through peat, wood, paper, food products, and other
materials is peculiar in that it rapidly and almost entirely diffuses (or disperses) within a very thin layer,
Experimental studies [4, 9] have shown that the fraction of flux which passes straight through a 0.1 mm
layer of most materials is less than 5%. On the other hand, the hemispherical transmittance of the same
specimen may be as high as 40-50%. Such a rapid conversion of a parallel beam into diffuse radiation has
to do with strong and multiple dispersion at various optical inhomogeneities in the material layer.

During parallel irradiation, in a certain zone adjacent to the irradiated surface of the material at
depth x there appear two fluxes of similar intensities: a parallel flux q;\ and 2 derivative diffuse flux q,.
In our case the problem concerning the attenuation of energy fluxes q;\ and q, is expeditiously solved by the
differential-difference method (discrete fluxes), which has been developed by Schuster, Schwarzschild,
Duntley, Ambartsunyan, et al,

We will consider the process of energy transmission by monochromatic radiation through a plane
layer of isotropic and selectively attenuating medium, width Z. Parallel radiation beams E;\’i and E;L’z
impinge on a layer from both sides, respectively, both at angle § = arccosp (Fig, 1). On the diagram we
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} - — have blown up a layer element of thickness dx at depth x, its
optical properties will be characterized by determinate em-
pirical spectrum coefficients which do not require that the
2.2 dispersion indicatrix and the spatial flux distribution inside
the layer be known explicitly. Such characteristic coefficients
will be the spectral absorptivity k, and dispersivity o, with
respect to parallel irradiation as well as the mean-angular
absorptivity k,, "forward" dispersivity f,, and "backward"
dispersivity s, with respect to diffuse irradiation. Unlike the
fundamental characteristics k;, and o,, the secondary mean
characteristics, which can be determined experimentally, con-
. tain the overall information about the spatial distribution of
Fig. 1. Pertaining tc the problem of radiation energy inside a layer as well as about the absorptive
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a parallel radiation beam impinging and the dispersive properties of the material. Information
at some angle and traveling through a about the unknown third characteristic x, (y) and about the ir-
plane layer of absorbing and dispers- radiation mode can be obtained through the special coefficients
ing material with an arbitrary disper- 6 and m relating them to the fundamental optical absorption and
sion indicatrix, dispersion characteristics as follows:
by, =mk,, (1)
s,=md0,, f;,=md0,. (2)

The auxiliary coefficients § and m, with the aid of which the mean characteristics of the material are
plotted, can be found from known relations (see (3, 5, 7, 13]). The proportionality factor m, called the
space distribution coefficient of incident radiation, is equal to the reciprocal of the mean cosine i = cos®
of the incidence angle ®: m = 1/p. When both beams impinge normally to the surface of the volume or
layer element, then m = 1. For a hemispherical and perfectly diffuse incident flux m = 2.

Coefficients 65 and d¢ are numerically equal to the forward fraction and the backward fraction, re-
spectively, of flux dispersed in the volume or layer element with a dispersion indicatrix X3, when the
incident radiation is contained within a soiid angle w' = 27 with an angular intensity distribution By (w").
We note that the sum of these two coefficients is always equal to unity: g + 6¢ = 1.

According to Fig. 1, layer dx is irradiated at an angle ® by opposing parallel fluxes q!, q' and op-
posing diffuse fluxes q,, q_ of the dispersed radiation.

Fraction k)\q}L of each parallel flux q! and q' is absorbed by layer dx, while fraction o qh is dispersed
in all directions according to the Buger —Lambert law. Moreover, the fractlon 55‘7}\‘17\ = s'q of total dis~
persed radiation is dispersed backward, while the fraction 6f07\q}\ f] q is dispersed forward in the direc-
tion of the parallel flux impinging on layer dx.

Now, for the parallel fluxes g} and q we introduce the mean dispersivity in the forward direction
£}, =fl =} and in the backward direction s! =s! = s}, for the diffuse fluxes we introduce the mean ab-
sorptivity k+ =k_ =k,, the mean forward dispersivity f, = f_ = f,, and the mean backward dispersivity s,
=8 =8

— Ar

Assuming that my =m_=m =2 and 6, =6_ =6 <1, with (1) and (2) taken into consideration, we can
set up the following system of equations for q}, q!, q,, and g_:

‘?—’*:—i R AP A— @)
” m 4 w9
RN .
LZC* =— (b 452) 4.+ 519+ —{% q++ 2 g )
. Lfo_ = (ky-+8)q_—+ shq++%— g+ %- 9., (6)

with 4 = cos®,
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Multiple dispersion in a plane layer irradiated with a parallel beam is taken into account by the sys-
tem of two equations, (5) and (6) referred to dispersed fluxes, which supplement the Buger — Lambert law
(3)-@) of attenuation of parallel radiation. The boundary conditions will be

g\ (x=0)=Ep1, ¢,(x =0)=0,
g (x=0=Epq, g_(x=0)=0.

The solution to system (3)-(6) with boundary conditions (7) is

. ’ &
‘J+:EA,19—XP(~T:LX),' 8)
o= Biexp | — - (l—x)] , ©)
E
0= 2 (G foxp (— L) — Vrexp (L] + ¥, exp [ — 22 1)
— ¥ *4
x [exp (Lyx)—exp (——L'kx)]} — Ej Cyexp (— 3”’“— x)
+ IE*;;,z {Czlpx [exp (Lyx)—exp (—Lyx)] +-Cyexp (~ e l)
—¥i ) u
® , &
X [exp (—Lyx)—¥3 exp (ka)]]—E,h,z, Cyexp [ — T‘ (’l—-x)] ; (10)
N E' -
=2 0 exp (L () — W exp (L, (0]

+C, ¥, exp (——f—; 1) [exp {L, (I—x)}—exp {— L, (I— x)}]}

—EusCexp [ = ()] B (O e Ly (=)= (= Ly (=]
i 1— ¥
4+C, exp (— B z\) [exp {— L,({ —x)} — W5 exp {L, (I—x)}] } —E3\Cyexp (_ S x) , (11)
y’ 7/ N ”4
where
¥, =Ry exp (—L,1); (12)

and C;, C, are parameters which describe the optical properties of the medium as well as the spatial energy
distribution of fluxes q,, q_ at depth x and which account for the mode of layer irradiation:

c, = “SLSA"s;‘Sh &, ;" LR _ (1”—6f)(mpf_l)A : (13)
& — p2L} 1— u2K?
phigy, + Attpsis,  (Imp) 6,0 4mp (1—28) A? ”
C2 - ) 512 == PR ) ( )
S;h—p L;L I—M K
Ly,

K=m}V (1—A) [1+A(1—-28)) — (18)

&,

Both Ly and R, , are related to the decay factor &, and to the life expectancy of a quantum A = Ty
/ &, according to

Ly=me, V (1 —A) [1+A(1—28))] = Vl?,v(_lzﬁ»é_s;, (16)
_ 1AV (1 —4) [1+A(—25)]
Ry = ——1 T5)A 2 (17)

based on Egs. (1)-(2).

With the aid of expressions (8)~(17) based on mean characteristics, without information about N0
and about the spatial distribution of radiation energy in the layer, one can determine the monochromatic
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diffuse radiation fluxes at depth x in a material layer of thickness [ with an arbitrary dispersion indicatrix
and irradiated from both sides at an angle ®, These expressions will be more general than those derived in
[13] for the special case of one-sided irradiation with the energy of perfectly diffuse fluxes ¢, g.. distri-
buted uniformly in space (m = 2).

For diffuse irradiation of a layer, expressions (10) and (11) simplify into expressions obtained for
this case earlier in [9].

The total density vector of monochromatic radiation flux has the scalar value
3, ()=, — g )+(g.—q.) (18)

The quantity of radiation energy per unit time absorbed by a volume element of thickness dx at depth
x 15 determined from the equation representing the law of energy conservation

wp (%) = ky (¢34 92) + Ry (9, + )= ki 0B - ByEnso - (19)
Expressions (18) and (19) for w;\and q;\become unwieldy for the general case,

When both impinging fluxes are equal, E;\,l = E;\,z = E!, then the formulas for al and w;\ become much
simpler:

gu(x)=E, I:fﬁ““ {exp(— L%) —exp[— L, ( — O]} [C,—{—Cl exp (~ TTL z” . (20)
A h
() =y Ej, = fexp (— Lyx) -+ exp [ Ly ({ — )]} x [cgefcl exp (— L l) ] —BE;(Cy+Cy)
19, 1
X {exp (— S x) - exp [~8—’ (l—x)” -k, Es, ﬂfexp (— S x) -l exp [— Ea (Z——x)P ) (21)
n u (I G N J

The quantity of energy absorbed in a layer of an infinite optical thickness is

o, ()= BE; {(1 Rim) Cyexp (—Lyd)+(Cr+ € exp ( ey )]
!’L s
LB exp (‘ S x’) — BB}, Ef+kEn B p. (22)
- w

For irradiation at an angle ®, the thermoradiation characteristics RK@; 27) =R} and T)\(@); 271 = T;\
are found from expressions (8)~(11) in the case of diffuse fluxes q, gq. and parallel fluxes q}, g', respec-
tively, with one-sided irradiation (E ;L,z =0).

With the fraction of forward flux g}, according to Buger's law, T = exp (—ey1/u) and with the known
expressions for T, and R, (see 3, 5, 7, 9]), one can write down for a layer of material with an arbitrary
dispersion indicatrix the following expressions

Ry, =CR—Cy (1= TgT)),

(23)
Ty, =Co(Ty—Tg) -+ T (14+CR, (24)
Ay, = 1—{Cy (R +-T,—Tg )— C, [1— Ty(Ry -~ T -+ T3 |, (25)

which relate its thermoradiation characteristics Ry, T;, A;\ referred to irradiation by a parallel beam at
angle ® and R,, T,, A, referred to irradiation by a diffuse flux.

The spectral reflectivity of a layer with an infinite optical thickness is
Riw=CyRpe — Cy. (26)

Formulas of the 23)-(24) type (for normal incidence y = 1) were first derived by Duntley [17], who
experimentally demonstrated their applicability to paper. Analogous formulas have been derived in [13, 19]
for the case of perfect diffusion (m = 2) of dispersed fluxes q,, q_ inside the layer,

For the extreme case of an only absorbing medium ((77\ =0, A =0), C; =0, Cy =0, and from (24) for
¢ =1 we have the known expression representing Buger's law:

T (03,=0)==exp (k). 27)
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Fig. 2. a) Dimensionless parallel flux q*' and dis-
persed fluxes q¥, q*; b) Spatial irradiance due to
dispersed fluxes E* =q% + q* and total spatial ir-
radiance E¥ = =qg* + q +q¥", as functions of the
optical thickness kkl, at various values of the dis-
persion factor A: 1) 0.95; 2) 0.9; 3) 0.5; 4) 0.1.

All these formulas for q,, q., q;t, w;\, and the expressions relating the mean characteristics E}\, Sy
fh’ Ly with the basic characteristics Ky 03 X (V) make it possible to analyze the radiation field inside a
plane layer of material irradiated by a wide parallel beam.

In Fig, 2 are shown the dimensionless magnitudes of fluxes g* i¥ =qy/ E', Q¥ =q_/ E;\ generated by the
dispersion of opposing diffuse fluxes and the spatial irradiances E¥ M and EM’ as functions of the dispersion
characteristic A of the medium and of its optical thickness kyl inasemiinfinite layer under normal irradiation (u
=1), for the special case of a symmetric dispersion indicatrix (8¢ = 0.5). All curves here have a complex
shape, deviating from an exponential curve at small optical thicknesses (k,I < 3) and approaching it at
large optical thicknesses. As k,/ increases, at any value of A, the den81ty of dispersed radiation g% and
the optical irradiance E}"\ bothincreasein the boundary zone, approaching their maxima at certain definite
values of k.., and then decrease again in some complex manner,

The maxima of functions g% (x) and EM (x) can be located with the aid of relations (10) and (11) with
(19) taken into account. In the case of a semiinfinite layer we have for function E¥ 3o X)

kol (ESS) = (28)

In [MK U Ra) Gy
1+C,

It isevident from the diagram that, as A increases, the maxima of q¥ and E¥ shift toward large
optical depths. The intensity of dispersed radiation increases here continuously, moreover, owing to the
dispersion of parallel radiation, because the fluxes are spatially not discretized within this range, The
disperse irradiance is mainly due to a single dispersion of a parallel beam., There follows a range where
qi and Eio decrease quasiexponentially with increasing depth, where the dispersed radiation is essentially
propagated outside the geometrical zone of a parallel beam. Very deep inside the layer (kyl > Kyl m) there
occurs multiple dispersion, which ensures additional pumping of energy into the flux in violation of Buger's
law of attenuation [7].

In the case of highly dispersive media (A > 0.9, curves 1) the spatial irradiance E)\D and the flux
density g, at depths k,l > kAl are determined mainly by the dispersed radiation flux. The parallel flux
g\ is smaller than the diffuse flux q, and thus T} p« T A Expressions (23) and (24) simplify then consider-

ably:
y Ry [1—exp (—2L,0)]

R), = C,R,—C,=C
= R = R (2L,

—Cy, (29)

2
Tj = CTy=C, ARim) xR (—La]) (30)
1— Rjo exp (— 2L,1)
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Formulas (29) and (3
when u =1, to relate the thermoradiation characteristics of the layer R’
of the medium k;, k?v S3s Ly and to determine the parameters C;, C, on the basis of R)\, Tx and R,, Ty
measured under parallel and diffuse irradiation, respectively.
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Fig. 3. Hemispherical reflectance R (u; 2m) and
hemispherical transmittance T, 3 2m): A) function of
the optical thickness k,J at fixed values of the dis-
persion factor A = 0.1 (a) and 0.9 for (b), for p =1;
B) function of the cosine of the incidence angle i (u
=cos®), at kyl =1 and A =0.9, obtained by various
methods: 1) according to formulas (23) and (24); 2)
numerical method [20]; 3) numerical method (Hottel)
[18]; 4) diffusion method [20]; 5) diffusion method
(Richards) [21]; 6) method of spherical harmonics
[8]; 7) two-fluxes approximation [16]; 8) six~fluxes
approximation [16].

0), first derived by Duntley [17] and later by Lathrop [19],

L [ (Riw—R3) (Rhop—Cy) } ,
l C.Th
7 - [ Cy— (Ria—Cy) ] L,
C2+(R7~w'—cl)

S;\‘ i [._2(_R_;"3°~::;)__] L A
Co— (R — C 2}

make it possible,
T to the optical characteristics

A simultaneous solution of (23) and (24) with respect to L,I for the case where exp (&3l /p) — 0 yields
the following expressions relating the optical characteristics of the medium to the thermoradiation char-
acteristics of the layer R,, T, under parallel irradiation:

(31)

(32)

(33)
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TABLE 1. Values of R, (; 2m) and T, (v; 27) in the Case of a Symmetric Indicatrix X)), kyl =1, and A

= 0.9, for Various Values of u

p=0 p=0.5 B=01
Method of determination \ , , ) . }
R )\ Ry ™ R T3
According to formulas (23) and
(24) 0,632 0.189 0,403 0,422 0.274 0.601
Numerical method [20] 0.635 0.182 0.393 0.415 0,267 0.593
Numerical method (Hottel
approximation) [18] 0,636 0,173 0.400 0.418 0,282 0,585
Diffusion method [20] 0,600 0.220 0,398 0.431 0,273 0,602
Method of spherical harmonics
(first approximation) {8] 0,63 0.17 0,39 0,400 0.275 0.540
Method of moments (second
approximation) [20] 0.63 0,18 0.39 0.415 0.27 0.59

TABLE 2. Values of Ry, (; 27) in the Case of a Symmetric Dispersion Indicatrix x, (v), for Various Values

of A and p
A=01 A=0.9
Method of determination
§=0 p=0.5 p=0.1 u=0 =05 =10
According to formula (26) 0,051 0.026 0,017 0.683 0,518 0,435
Numerical method [20] 0,051 0,024 0,016 0.684 0.508 0,415
Numerical method (Ambart -
sumyan) [2, T} 0,68 0.51 0,43
Diffusion method [20] 0.048 0,026 0.018 0,659 0.517 0, 426
Method of spherical harmonics
(third approximation) [20] 0,049 0.025 0.017 0.673 0.512 0.418
Method of moments (second
approximation) [20] 0.051 0.024 0.016 0.671 0. 489 0.403

TABLE 3. Values of Ry, (u; 27) in the Case of a Forward Elongated Indicatrix X, (y) =1 + cosy and Nor-
mal Incidence (u = 1), for Various Values of A

Method of determination A
0.4 0.5 06 0.7 0.8 0.9
According to formula (26) 0,052 0,073 0.107 0,145 0.212 0.338
Numerical method [7] 0.04 0.06 0.09 0,13 0.20 0.33
Differential ~difference method
[13] 0.05 0.08 0.11 0.15 0.22 0.32
Method of moments [7, 10] 0.053 0.076 0.109 0.151 0.223 0.349

The decay factor £, can be found from (23) and (24) but only in the case of small optical thicknesses,

where Ty > 0.

In order to evaluate the accuracy of the described procedure for analyzing the transmission of radia-
tion energy through dispersing and absorbing materials under parallel irradiation, values of R, (u; 27),
T, (s 2m), and Ry (u; 27) calculated by various methods are shown in Fig. 3A, B and in Tables 1-3. It is
evident here that the values of reflectance and transmittance obtained by our method of discrete fluxes
and by numerical methods of Hottel, Tien, Churchill, et al. [18, 20] for various incidence angles ®, various
dispersion characteristics of the medium A, and various optical thicknesses k, differ on the average by
1-29,. This indicates that the proposed method is sufficiently accurate when applied to capillary-porous col-

loidal materials,

Curves 1 (Fig. 34) of T, (u; 27) as a function of k)l at A = 0.1 and 0.9, calculated by formula (24),
agree within 1-29, with curves 2, 3 obtained by numerical methods [18, 20] within the range of optical
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thicknesses k,! from 0 to 3. For k)] > 3 curves 1 gradually depart toward small values of T, and approach
curve 8 representing the six-fluxes Chu—Churchill approximation [16]. The reflectance as a function of Kyl
agrees within 1-2% with the relations obtained by numerical methods over the entire range of optical thick-
nesses,

It can also be seen in Fig. 3 that, with increasing dispersion (A > 0.1), the T;\ = f(k,!) curve cal-
culated by formula (24) for 6; = 0.5, m = 2, y = 1 deviates increasingly from the Buger exponential curve
exp (~k,l). The curves of spatial irradiance E; 4 in Fig. 2 also differ from the exponential curve exp kD).
When the dispersion is weak (A < 0.1), the Buger—Lambert law can be applied to layer thicknesses up to
kyl < 3. In this case the error in the determinatioh of T;\neglecting dispersion is up to 5%, but only 3.2%
for ki =1 and 4.2% for k! =2. With increasing dispersion and layer thickness, the error becomes much
larger, which is explained by the increasing fraction of multiply dispersed radiation, Thus, with a strong
dispersion A = 0.9, the error is less than 209 for k,I = 0.5 but already 75.5% for kI =3.

According to Tables 2 and 3, the values of Ry (s 2m based on formula (26) for various values of A
and p as well as various dispersion indicatrices (spherical X)(y) =1 and the simplest forward elongated
X3 (y) =1 + cosvy) agree within 1-2% with the results of numerical methods.

Thus, the proposed method of using mean characteristics which do not require that the indicatrix
X5 () be known, makes it possible to determine the radiation inside capillary-porous colloidal or other
radiation dispersing materials irradiated by a parailel flux at an incidence angle ®. In terms of accuracy,
this method matches the Ambartsumyan, Hottel, and Tien-Churchill numerical ones,

NOTATION
A is the dispersion factor: life expectance of a quantum;
ky is the absorptivity, m1;
oy is the dispersivity, m-1;
X5 &) is the dispersion indicatrix;
ky is the mean apsorptivity, m-1;
£ is the mean forward dispersivity, m™1;
Sy, is the mean backward dispersivity, m-1;
Ry is the reflectance of plane layer, thickness [;
Ty is the {ransmittance of plane layer, thickness [;
Ay is the absorbance of plane layer, thickness [;
Ry is the reflectance of layer with infinite optical thickness;
® is the incidence angle of radiation flux (u = cos®);
E;\ is the density of monochromatic radiation impinging on a layer at angle ®;
Qs C- are the densities of opposing diffuse fluxes inside a layer at depth x;
al, q' are the densities of opposing parallel fluxes inside a layer at depth x;
E?\,O =g+ + g- is the spatial irradiance due to dispersed flux;
E'A, o0 A+ -+ ql is the total spatial irradiance;

Exe = l—q\ + 8A.
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